$(i)$ $f (x)$ is continuous and defined for all real numbers
$(ii)$ $f '(-5) = 0 \,; \,f '(2)$ is not defined and $f '(4) = 0$
$(iii)$ $(-5, 12)$ is a point which lies on the graph of $f (x)$
$(iv)$ $f ''(2)$ is undefined, but $f ''(x)$ is negative everywhere else.
$(v)$ the signs of $f '(x)$ is given below
Possible graph of $y = f (x)$ is
If $f(x)$ = $sin^2x + xsin2x.logx$, then $f(x)$ = $0$ has
Mean value theorem $f(b) -f(a) = (b -a) f '(x_1);$ from $a < x_1 < b,$ if $f(x) = 1/x$ then $x_1 = ?$
If Rolle's theorem holds for the function $f(x)=x^{3}-a x^{2}+b x-4, x \in[1,2]$ with $f ^{\prime}\left(\frac{4}{3}\right)=0,$ then ordered pair $( a , b )$ is equal to
If $f(x)$ satisfies the conditions of Rolle’s theorem in $[1,\,2]$ and $f(x)$ is continuous in $[1,\,2]$ then $\int_1^2 {f'(x)dx} $ is equal to
Which of the following function can satisfy Rolle's theorem ?